Landslide dam formation and deformation strongly affect water and sediment runoff. When a large-scale landslide dam collapses due to overflow erosion, peak flood discharge may exceed inflow discharge by several times. Such an abrupt flow discharge increase by a dam burst may cause serious damage downstream. We propose a one-dimensional model for river-bed variation and flood runoff consisting of a two-layer model for immature debris flow and a bank erosion model. We applied this model to the Nonoo landslide dam in Japan's Miyazaki Prefecture, formed by typhoon Nabi in September 2005, and China's Tangjiashan landslide dam formed in the Wenchuan earthquake in May 2008. The model reproduces the observed flood runoff processes in the two areas. Calculated results suggest that peak flood discharge diminishes when water accumulating behind the landslide dam is small, and excavating the landslide dam crown effectively reduces flood discharge.

Keywords: landslide dam, outburst, flood discharge prediction, two-layer model, river bed variation

1. Introduction

Landslide dams are formed when torrential rain or an earthquake causes a large-scale flank collapse damming the river channel. Potential downstream flooding makes it vital that risk information be communicated to affected areas. Measuring the landslide dam with an airborne laser and prompt numerical simulation based on measurement results enable the size of the flood to be predicted, and add to vital information.

In previous studies on landslide dam collapse and flooding, Takahashi et al. [1] classified sediment transportation and analyzed it by assigning flow resistance laws based on mode of sediment movement which greatly changes with land slope. Takahama et al. [2] proposed a two-layer model assuming an interface between an upside low concentration (water flow) layer and a downside high concentration (sediment movement) layer in analyzing immature debris flow with a governing equation for each layer. Based on these existing models, we developed a model to reproduce flood runoff accompanying landslide dam collapse [3, 4].

When a landslide dam collapses, flow is very high near the dam’s crown, causing abrupt erosion. Once it starts overflowing from a specific point on the crown, the flowing concentrates to form a channel, and simultaneously with longitudinal erosion, causes transverse (side-bank) erosion that gradually widens the channel [1]. Takahashi et al. [1] used a two-dimensional river-bed variation simulation model considering transverse erosion of the landslide dam collapse successfully reproducing flood runoff having such landslide dam transformation. This assumes the shear force applied to the side bank to be half of the river-bed shear, and that the shear force causes side-bank erosion. This approach considers the relative elevation of the side-bank for the erosion rate, and assumes that the whole side bank regresses on an average. Takaoka [5] proposed a side-bank erosion rate equation on bed movement through experiments using straight channels, and concluded that the side-bank erosion rate equation was proportional to the flow velocity.

We use the above model first to numerically simulate the flood caused by the large-scale collapse of a landslide dam formed in the Mimikawa River watershed in Nonoo, Miyazaki, in September 2005 by typhoon Nabi (typhoon No. 0514). We then numerically simulate Tangjia Shan landslide dam formed by the Wenchuan Earthquake in May 2008, and compare them to observed results.
sediment movement layer are expressed as

\[
\frac{\partial (\rho_w \nu_v h_w)}{\partial t} + \frac{1}{B} \frac{\partial (\rho_w \beta_w v^2 Bh_w)}{\partial x} - \rho_w s_i u_I = 0
\]

\[
\frac{\partial (\gamma \rho_v h_v)}{\partial t} + \frac{1}{B} \frac{\partial (\rho_v \gamma_v v^2 Bh_v)}{\partial x} + \rho_s s_i u_I = 0
\]

\[
\rho \text{ is average density, } \theta \text{ the river slope, } B \text{ the river width, } h \text{ the fluid layer thickness, } H \text{ the relative side-bank elevation, } v \text{ the average flow velocity, } g \text{ gravity acceleration, } c \text{ the average concentration of all layers, } c_s \text{ the average concentration of the sediment movement layer, } c_s (= 0.6) \text{ deposit layer concentration, } u_I \text{ the flow velocity in the } x \text{ direction on the interface, and } s_I \text{ the volume the water flow layer acquires per unit area and per unit of time through the interface. } P_w \text{ is pressure applied to the water flow layer integrated from the interface to the free surface, } P_s \text{ pressure applied to the sediment layer integrated from the river bed to the interface, } P_f \text{ pressure at the interface, } \tau_w \text{ shear stress applied to the interface, } \tau_s \text{ shear stress on the river-bed surface, } v \text{ gush volume (erosion rate) into the sediment layer through the river-bed surface, } s_T \text{ side-bank erosion rate, } \theta_e \text{ the equilibrium slope corresponding to the all-layer average concentration, } \phi_s \text{ the internal friction angle of sediment (35.0°) and } z_b \text{ river-bed height. } \gamma, \gamma', \beta_w \text{ and } \beta_v \text{ are distribution correction factors resulting from the fact that the flow velocity, concentration, and density show the shape of distribution, all of which are 1. We use the model by Egashira et al. [7] for each shear stress. The shear stress } \tau_w \text{ at the interface is expressed as }

\[
\tau_w = \rho_w f_w \left| v_w - u_I \right| \text{ (5.10)}
\]

\[
f_w = \left[\frac{1}{k_f} \left\{ \left(1 + \frac{\eta_0}{h_w} \right) \ln \left(1 + \frac{h_w}{\eta_0} \right) - 1 \right\} \right]^{-2}
\]

\[
\eta_0 = \sqrt{k_f} \left(1 - \frac{c_s}{c_s} \right)^{1/3} d \text{ (5.12)}
\]

The shear stress } \tau_s \text{ for river-bed surface is expressed as }

\[
\tau_s = \tau_y + \rho_w f_s v_s \left| v_s \right| \text{ (5.13)}
\]

\[
\tau_y = \left(\frac{c_s}{\alpha} \right)^{1/5} \left(\sigma - \rho_w \right) c_s g h_s \cos \theta \tan \phi_s \text{ (5.14)}
\]

When } G_{sk} \neq 0:

\[
f_s = \frac{225}{16} f(c_s) G_{sk}^4 (W + G_{sk})
\]

\[
\times \left\{ W^{5/2} - (W + G_{sk})^{3/2} \right\} \left(W - \frac{3}{2} G_{sk} \right) \left(\frac{h_s}{d} \right)^{-2}
\]

When } G_{sk} = 0:

\[
f_s = 4 f(c_s) \left(\frac{h_s}{d} \right)^{-2}
\]

\[
\alpha \text{ is coefficient and } s_T = 0 \text{ when } s_T \leq 0.
\]

The equations of motion of the water flow layer and the

2. Basic Calculation Model Equation

Figure 1 diagrams the two-layer model [2]. Takahama et al. [2] separate the water flow layer of water alone and the sediment movement layer containing a water/sediment flows to write the governing equation below with two-layer interface } s_I \text{ flux. Subscripts } w, s \text{ and } t \text{ are for the water flow layer volume, sediment movement layer, and total of all layers.}

The whole fluid layer continuity equation of is expressed as

\[
\frac{\partial h_t}{\partial t} + \frac{1}{B} \frac{\partial B h_t}{\partial x} = s_I + 2 s_I h_t \text{ (5.1)}
\]

The continuity equation of sediment in the sediment movement layer is expressed as

\[
\frac{\partial c_s h_s}{\partial t} + \frac{1}{B} \frac{\partial c_s B h_s}{\partial x} = c_s \left(s_I + 2 s_I h_t \right) \text{ (5.2)}
\]

The continuity equation of river bed is expressed as

\[
\frac{\partial z_b}{\partial t} = - \frac{s_I}{\cos \theta} \text{ (5.3)}
\]

Given the relative side-bank elevation, change over time in river width is expressed as

\[
\frac{\partial B}{\partial t} = 2 s_I h_t \text{ (5.4)}
\]

To specify erosion rate of bed sediment in Eqs. (1), (2), and (3), we employ Egashira et al.’s formula [6] for two-layer flows:

\[
s_I = \nu \tan (\theta - \theta_e) \text{ (5.5)}
\]

\[
\tan \theta_e = \frac{(\sigma - \rho_w) c}{(\sigma - \rho_w) c + \rho} \tan \phi_s \text{ (5.6)}
\]

The side bank erosion rate [5] is expressed as

\[
s_T = \frac{1}{\alpha} \text{ (5.7)}
\]
\[
f(c_s) = k_f \left(1 - c_s\right)^{5/3} + k_g \frac{\sigma}{\rho_w} \left(1 - e^2\right) c_s^{1/3}\]

\[
G_{sk} = \frac{\tau_{ext}(z=2d) - \tau_{sk}(z=2d)}{\rho_w g h_s} = \left\{ \frac{\sigma}{\rho_w - 1} \right\} \sin \theta - \left(\frac{\sigma}{\rho_w - 1}\right) c_s \cos \theta \left(\frac{c_s}{c_s^*}\right)^{1/5} \tan \phi_s
\]

\[
W = \frac{\tau_{w}}{\rho_w g h_s} = f_w \left|v_w - u_I\right| \left|v_w - u_I\right| \frac{g h_s}{g h_s}. \]

\[
\sigma \text{ is sediment density, } k_f = 0.25, k_g = 0.0828, \ \kappa \text{ is Karmans constant, } e \text{ is the coefficient of repulsion (}= 0.85), \text{ and } d \text{ grain size. } \tau_{ext}(z=2d) \text{ is shear stress as an external force on the river-bed surface and } \tau_{sk}(z=2d) \text{ yield stress on the directly upper surface of the river bed. When } G_{sk} \text{ is negative, the yield stress exceeds the external force in the sediment movement layer. In such condition, we expeditiously set the shear stress } \tau_w \text{ larger to avoid the excess. And we calculate } u_I \text{ and } f_w \text{ at the riverbed surface to fit the external force to the external force.}

If the river-bed slope is small and the volume concentration on the fluid layer below 0.02, we use Manning friction factors as follows:

\[
\tau_b = \frac{\rho g n^2 v |v|}{h^{5/3}} \ldots (20)
\]

\(n\) is the Manning roughness coefficient (\(= 0.05\)).

3. Application to Nonoo Landslide Dam

3.1. Overview

Satofuka et al. [8] surveyed Nonoo landslide dam and computed flood flow, using the model illustrated in Chapter 2 and obtained interesting results. A part of the results is described here.

Figure 2 shows the Nonoo landslide dam, at the Mimikawa River watershed, in Miyazaki Prefecture. Torrential rains from typhoon Nabi in September 2005 caused the right-bank slope failure 370 m in the direction of flow between points A and B, downstream from the Tsukabaru Dam, as shown in Fig. 3, to form a landslide dam of 57 m high and 120 m wide, whose longitudinal profile is shown in Fig. 4.

Figure 5 diagrams the Nonoo landslide dam and the Tsukabaru Dam upstream. That prevented the Nonoo landslide dam inundation area from extending further upstream, reducing the size of the inundation. Fig. 6 shows a plan view from the Tsukabaru Dam to the Yamasubaru Dam, a section of which forms a distinct valley with both sides of the river channel forming steep slopes.

Figure 7 shows the longitudinal river-bed profile and the longitudinal distribution of the river width. The x-axis is the distance measured downstream along the central axis of the valley originating at the Tsukabaru Dam, measured at 10 m intervals. Fig. 8 shows the longitudinal river-bed profile and the longitudinal river-width distribution without the Tsukabaru Dam. We estimated the river bed shape in the upstream Tsukabaru Dam watershed by linearly connecting the river-bed level at the dam and that at the end of the reservoir, designating the river width as the width in filling period.

3.2. Numerical Simulation of Flood Runoff Caused by Nonoo Landslide Dam Collapse

3.2.1. Calculation Conditions

We made calculations in leapfrog scheme using the above basic equation, with the river channel as the rectangular cross section in all the sections.

Based on the grain size distribution measured at the red circle in Fig. 2, we use grain size \(d\) of the landslide dam of 40 cm at \(d_{50}\) (shown in Fig. 9). Coefficient \(\alpha\) of Eq. (7) is \(\alpha = 1000\). In the calculation, the initial river width on the landslide dam is set to be equal to the river width before the landslide dam formation.

We calculated on three cases listed in Table 1. In Case 1, we reproduced actual phenomena and calculated the section from the Tsukabaru Dam to the Yamasubaru Dam, shown in Fig. 6, with Tsukabaru Dam outflow, shown in Fig. 10, as an inflow condition from upstream. In Cases 2 and 3, we calculated the section from the end of the Tsuk-
Prediction of Floods Caused by Landslide Dam Collapse

Fig. 4. Anticipated longitudinal profile of Nonoo landslide dam.

Fig. 5. Nonoo landslide dam and Tsukabaru Dam.

Fig. 6. Plan view of analysis target.

Fig. 7. Longitudinal river-bed profile and longitudinal distribution of river width from Tsukabaru Dam to Yamasubaru Dam.

Fig. 8. Longitudinal river-bed profile and longitudinal distribution of river width assumed without Tsukabaru Dam.

Table 1. Calculation conditions.

<table>
<thead>
<tr>
<th>Case</th>
<th>Supply hydrograph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>considered Outflow data from the Tsukabaru dam</td>
</tr>
<tr>
<td>Case 2</td>
<td>ignored Outflow data from the Tsukabaru dam</td>
</tr>
<tr>
<td>Case 3</td>
<td>ignored Inflow data to the Tsukabaru reservoir</td>
</tr>
</tbody>
</table>

Fig. 9. Grain size distribution of sediment observed on site.

Fig. 10. Inflow and outflow of Tsukabaru Dam.

Tsukabaru Dam reservoir to the Yamasubaru Dam shown in Fig. 6, with Tsukabaru Dam outflow given as an inflow condition for Case 2, shown in Fig. 10, and with Tsukabaru Dam inflow for Case 3.

3.2.2. Calculated Results and Discussion

Change over time in the longitudinal Case 1 landslide-dam profile shown in Fig. 11 indicates that erosion started from the downstream edge of dam’s crown and the edge
gradually shifted upstream. As the crown’s edge moved upstream, longitudinal erosion developed abruptly, as reproduced in the results for the channel experiment [1] related to landslide dam erosion and collapse.

Calculated and measured results for the Yamasubaru Dam supply hydrograph in Case 1 are compared in Fig. 12. For the measured value, we deduct Yanabaru-gawa River inflow, a tributary further downstream than the Tsukabaru Dam, to calculate discharge of the main Mimikawa River alone. This shows that although calculated discharge increases and decreases slightly faster, the overall flood hydrograph and peak discharge are successfully reproduced.

Figure 13 shows calculation related to the flood hydrograph immediately below the landslide dam. Although Cases 2 and 3 use slightly different inflow conditions, calculated results are similar, so we compare Cases 1 and 2 in discussing the effects that the presence of the Tsukabaru Dam has on the flood hydrograph.

Peak discharge is 5500 m3/s for Case 1 and 18,000 m3/s for Case 2 – three times or more. In Case 1, the landslide dam began collapsing one hour and ten minutes after discharge was started, versus eight hours in Case 2. The difference was due to the Tsukabaru Dam having drastically reduced Nonoo landslide dam inundation.

Figure 14 shows the flood hydrograph of each case with the landslide dam collapse start as the origin. It took 20 minutes to flow 10 km from immediately below the landslide dam to the Yamasubaru Dam. Peak discharge is halved in Case 1. In Cases 2 and 3, peak discharge is reduced to just over 20% and discharge is 14,000 m3/s in the Yamasubaru Dam inflow. Such flood runoff due to large-scale landslide-dam collapse is expected to cause major flooding downstream. The reason this did not occur may have been thanks to the presence of the Tsukabaru Dam.
4. Application to Tangjiashan Landslide Dam

4.1. Overview

Mori et al. [9] computed flood flow resulted from the Tangjiashan landslide dam deformation. A part of the results is described here.

The Tangjiashan landslide dam was formed in Beichuan County, Sichuan Province due to the China Wenchuan Earthquake in May 2008. The landslide dam is shaped as shown in Fig. 15, and the longitudinal river-bed profile is shown in Fig. 16. Chinese People’s Liberation Army personnel excavated a channel 10 m deep and 7 m wide in the crown of the dam, as shown in Fig. 17, leading to a successful overflow at an early stage.

4.2. Numerical Simulation on Tangjiashan Landslide-Dam Collapse and Flood Runoff

4.2.1. Calculation Conditions

Calculation conditions are shown in Table 2. Coefficient \(\alpha \) of Eq. (7) is \(\alpha = 15000 \). Two-layer model calculations are made when channels were not excavated, Case 4, and when they were excavated, Case 5, as shown in Fig. 17.

The capacity of the Tangjiashan landslide dam is approximately 250 million m\(^3\), and the catchment area is about 3,500 km\(^2\). The inflow rate is assumed to be 1,000 m\(^3\)/s considering the huge catchment area.

In Case 4, the initial river width on the landslide dam is set to be equal to the river width before the landslide dam formation. In Case 5, the initial river width on the landslide dam is 7 m which is the width of excavated channel.

4.2.2. Calculated Results and Discussion

Figures 18 and 19 show Beichuan City flood hydrograph calculated in Cases 4 and 5. Peak discharges in Case 4 was 11,000 m\(^3\)/s and in Case 5 6,700 m\(^3\)/s. Calculated results in Case 5 are similar to 6,500 m\(^3\)/s in the
May 2008 issue of the IAHR Hydrolink newsletter. The value in the April 2009 issue is 6,420 m³/s.

Figure 20 shows flood hydrograph observations from the Internet, overlapping with Case 5 results. The calculation seems to reproduce the actual flood, although the calculated flooding duration is slightly longer.

5. Conclusions

We have proposed a two-layer model of side-bank erosion to reproduce a flood caused by landslide dam collapse. Applying the model to the Nonoo landslide dam successfully reproduced the collapse process and flood runoff of the landslide dam. The presence of the Tsukabaru Dam upstream from the landslide dam reduced the inundation area, reducing the flood peak.

For the Tangjia Shan landslide dam, an actual runoff hydrograph was successfully reproduced. Calculations show that the open-cut channels on the landslide dam crown made by the People’s Liberation Army dramatically reduced peak flood discharge.

We need further study to obtain more detailed topographic data of landslide dams by Laser-Profiler etc. And we also need to improve the calculation model, especially side bank erosion model.

References:
Prediction of Floods Caused by Landslide Dam Collapse

Name: Takahisa Mizuyama
Affiliation: Professor, Laboratory of Erosion Control, Division of Forest Science, Graduate School of Agriculture, Kyoto University
Address: Oiwake-Cho, Kitashiraka, Sakyu-ku, Kyoto 606-8502, Japan

Brief Career:
1978-1990 Sabo Division, Public Works Research Institute, Ministry of Construction
1981-1982 Visiting researcher, Colorado State University
1990- Department of Agriculture, Kyoto University

Selected Publications:

Academic Societies & Scientific Organizations:
• Japan Society of Erosion Control Engineering (JSECE)
• Japan Society for Civil Engineers (JSCE)
• International Association for Hydro-Environment Engineering and Research (IAHR)
• International Association of Hydrological Sciences (IAHS)

Name: Kiichiro Ogawa
Affiliation: Managing Officer and General Manager, Asia Air Survey Co., Ltd. Infrastructure System Development Center
Address: 1-2-3, Manpukuji, Asao-ku, Kawasaki-city, Kanagawa 214-0004, Japan

Brief Career:
1982 Joined Asia Air Survey Co., Ltd.
2009 On loan to Incorporated Administrative Agency, Public Works Research Institute

Selected Publications:

Academic Societies & Scientific Organizations:
• Japan society of Erosion Control Engineering (JSECE)
• Japan society for Natural Disaster Science (JSNDS)

Name: Kousuke Yoshino
Affiliation: Asia Air Survey C., Ltd. on loan to Incorporated Administrative Agency, Public Works Research
Address: Minamihara 1-6, Tukuba-city, Ibaraki 305-8516, Japan

Brief Career:
2004 Joined Asia Air Survey C., Ltd.
2009 On loan to Incorporated Administrative Agency, Public Works Research Institute

Selected Publications:

Academic Societies & Scientific Organizations:
• Japan society of Erosion Control Engineering (JSECE)